Summary of qualifications and capabilities

- Miniature integrated vacuum cells
- Ultra-high vacuum "Channel Cell" technology
- High-optical-access vacuum cells
- Vacuum optics
- Planar-integrated electrical feed-throughs and electrodes
 - DC to microwaves
- Miniature ion pumps for direct integration with vacuum cells
- Custom DFB and VCSEL lasers
- Spindt-type cold-cathode emitters

We are interested in supporting the integration and miniaturization of quantum computing systems for neutral atoms or ion qubits

Miniaturization Technologies for Atomic Systems

Integrated vacuum cell fabrication and ion pump technology

AQuA-64 vacuum cell for quantum computing with neutral atoms

- · Glass and silicon fabrication
- Scalable design
- High bake-out temperatures (up to 400 °C)
- Technology applicable to ion-based systems

This work was supported by the IARPA MQCO program through ARO Contract No. W911NF-10-1-0347.
Developed in collaboration with Prof. Mark Saffman, Ui Wisconsin, Prof. Dana Anderson, University of Colorado Boulder,

Ultra-high vacuum "Channel Cell" technology

Features:

- Single substrates vacuum interconnects
- Differential pumping
- P < 10⁻¹⁰ Torr
- High optical access
- Planar feed-throughs
- High current High voltage
- Integrated
- Active pumps
- Atom source
- Getters
- Optics
- 400 °C bakeout

Nork developed under the DARPA gBECi Program in collaboration with University of Colorado Boulder

High-optical-access vacuum cells and vacuum optics

Hexagonal cell

Integration of miniature opto-atomic systems

Example of an RF-interrogated, end-transition CSAC atomic clock Work developed under the DARPA CSAC p collaboration with Princeton University

Custom DFB and VCSEL lasers for atom pumping

Spindt cathode technology

Cold-cathode emitters and arrays

Applications:

Electron-impact ionization, RF-systems, TWTs, FELs, X-rays, spacecraft charge management, displays, field ionization, neutron generation

Sterling McBride, Senior Research Scientist SRI International, Princeton, NJ 08540 Email: sterling.mcbride@sri.com Tel: 609-734-2676

www.sri.com